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Rapid Coupling Matrix Reduction for Longitudinal
and Cascaded-Quadruplet Microwave Filters

Ruwan N. Gajaweera, Student Member, |EEE, and Larry F. Lind, Senior Member, IEEE

Abstract—To realize standard microwave filter structures, it is
necessary to zero some of the elementsin a general even-mode cou-
plingmatrix. Thezeroing processinvolvessolvinganonlinear set of
equations, performed here by using the Newton—Raphson method.
Thus, intelligenceisadded to thenumerical iteration procedure, to
ensurerapid convergence. Thereproduced transmission coefficient
S2; from thereduced matrix agreeswell with the one synthesized.

Index Terms—Cascaded-quadruplet (CQ) topology, coupling
matrix, filter synthesis, longitudinal topology.

I. INTRODUCTION

ICROWAVE filters composed of coupled resonators can

generate transmission zeros only by having cross-cou-
plings among nonadjacent resonators. Atiaand Williams set out
ageneral theory for cross-coupled resonator bandpass filtersin
their series of publications [1]-{4], which is still widely used
in the synthesis of these types of filters. Once the low-pass
transmission coefficient Sy (s) has been approximated, their
synthesis procedure directly extracts the elements of a full
or an even-mode coupling matrix and the external coupling
values. However, the resultant coupling matrix generaly
contains all possible couplings, which makes it unrealizable
[4]. Therefore, it is usual to annihilate the unwanted couplings
without changing the lossless network characterized by the
coupling matrix.

Among the various methods, repeated similarity transforma-
tions are applied to minimize the unwanted couplings[1]. How-
ever, this method does not always converge for longitudinal
(in-line) and cascade quadruplet topologies or can take a very
large number of iterations (say, 10°) to obtain a result. Further,
it is often not possible to find a sequence of similarity transfor-
mations as presented in [5] or [6] to realize the two topologies
commencing from this general full or even-mode coupling ma-
trix.

This paper presents a coupling matrix reduction method
commencing from a general even-mode coupling matrix M.,
extracted from the synthesis procedure outlined in [1]-4].
Physically symmetrical structures are considered for even-order
filter realization for longitudinal and cascaded-quadruplet (CQ)
topologies. There are three necessary conditions (see Sec-
tion I1) that need to be satisfied by the reduced matrix to
preserve the synthesi zed transmission coefficient of thelossless
network. Instead of applying repeated similarity transforma-
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tions, a system of nonlinear equations is formed for a single
orthonormal transformation to find a reduced matrix similar to
M., with the required topology satisfying the three conditions.
The Newton—-Raphson (NR) method is used to solve the set
of nonlinear equations numerically. Thus, some intelligence is
added to the iteration procedure to ensure convergence. The
analytical expressions are provided to form the constraints
and the Jacobian matrix for the NR procedure. It is shown
that this method can be applied for even filter orders 6-12
for longitudinal realization and 8-12 for CQ redlization. The
validity of the scheme has been verified by synthesizing
even-order pseudoelliptic filtering functions. The iteration
procedure converges within 40 iterations for all thefilter orders
considered. The transmission coefficient calculated from the
reduced coupling matrix agrees with the synthesized So; (s).

Thispaper isorganized asfollows. Section |1 briefly describes
the synthesisprocedureto extract A4, and the proposed coupling
matrix reduction scheme. Theresultsarediscussedin Section |11
and Section 1V presents conclusions.

Il. SYNTHESIS OF THE TRANSFER FUNCTION AND
COUPLING MATRIX REDUCTION

A. Synthesis of the Transfer Function

The synthesis procedure, which extractsageneral even-mode
coupling matrix M, for a given even-order Ss1, is discussed
in [1]{4]. The synthesis is based on assuming a symmetrical
doubly and equally terminated network. The coupling matrix
reduction method discussed in this paper commences from the
M. computed from this synthesis procedure.

The even-mode coupling matrix M, isdefined as[2]

Me = _TeAeTet, (1)
where 7. isan orthonormal matrix and A, isadiagonal matrix.
Theresultant M. isan order N/2 symmetric real matrix, where
N isthefilter order.

For a given low-pass S»1, the synthesis procedure extracts
the first row of 7, the diagonal matrix A., and the terminal
resistance values R; and R . The complete 7. may be formed
by using the Gram—Schmidt procedure [1].

Matrix M., obtained by the synthesis procedure described
above, contains al possible couplings. Therefore, it is usual
to annihilate the unwanted couplings to result in a more com-
pact structure. The reduced coupling matrix can be expressed
as Mp = TrA T, Where Ty is an orthonormal matrix. After
annihilation, Mg should satisfy the following three conditions.

1) Mg isreal and symmetric.

2) Eigenvalues of Mg should be the same as M.. i.e., Mg

issimilar to M..
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3) The first row of T isidentical in magnitude to the first
row of 1.

The first condition retains the symmetric network assumed.
The last two conditions preserve the synthesized lossless net-
work. Thus, the reduced matrix can reproduce the same power
transmission coefficient So1 (s) as synthesized. Even though the
similarity transformations satisfy the first two conditions, pre-
vious work overlooked the third condition, which aso needs to
be satisfied.

Section 11-B discusses the matrix reduction process, which
reduces a general even-mode coupling matrix for longitudinal
CQ redlizations. This process satisfies the three conditions out-
lined above.

B. Matrix Annihilation Using the NR Method

The general method isto find an orthonormal matrix 7'r such
that

Mp = TrA T (2

where Mg gives the required topology and satisfies the three
conditions stated above. It is possible to write a system of gen-
eralized quadratic equations f to hold orthonormality of 7’z and
zero elementsin Mg interms of unknown elementsin T'z. The
resultant quadratic equations can be solved numerically using
the NR method, which converges quadratically near a possible
solution.

The expression for the quadratic equations f and the linear
Jacobian matrix .J can be derived as follows.

For an m x m even-mode coupling matrix, let

T1=TrTk (3)
and
M1 =TgrA.. 4

Since the first row of T’r is known, the number of unknowns

n = m? — m. The number of constraints to satisfy orthonor-
mality of T are (m? +m — 2)/2 and are given by

. 1, t=7
le(i,j):Tl(Zvj)_{07 L;’éj =0

j=i+1,i+2, ..., m

. 1,
fo”_{>1, =i i+l i+2....om O
Thefirst derivative of (5) with respect to unknowns Tr (I, k)
[=2,3...,mandk=1,2, ..., misgivenby
fori=1andj #£1
iy _ [Ta(l k), 1=
(LK) 0 1#] (&)
fori>1landj#1
Tr(4, k) z
o i R\J» ’
Do _ LGy, 1=j (@
r (1, k) 0, else
fori>1landj=1
Afrigi 2TR (4, k) =i
2 — I ? . 6
TR (LE) 10, 1#i (6c)
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Constraints for the zero elementsin the upper triangle of Mg
can be given as

Inn, 5 = Mr(i, §) =0,

Since the first row of T and A. are fixed, the element
Mg(1, 1) isaconstant. The first derivative of (7) with respect
tounknowns Tr(l, k) I = 2,3...,mandk = 1,2, ..., m
is given by

fori£landj#1. (7)

fori=1andj+#1

Afvr(1, i) _ J Mi(L, k), l=yj (83)
ITr(l, k) 0, l#j
fori>1landyj #+
M@, k), 1=j
af (i 1 .’ ) /
ATni g = | MG, 1= (8)
R\ 0, else
fori>1landj =1
Of M (i) 2M, (i, k) =i
it = ey 8
OTr(l k) {0, 144, (8c)

Then x 1, f vector isformed by (5) and (7). Equations (6)
and (8) form the Jacobian matrix of order n. The following sec-
tions show how the above method can be applied to reduce M,
suitable for longitudinal and CQ topologies.

1) Longitudinal Realization: The main disadvantage of a
canonical structure isthe incidental coupling between the input
and output ports [7] since they are adjacent resonators of a
single-mode resonator filter or the same cavity of a dual-mode
filter. This limits the maximum achievable out-of-band isola-
tion. Thelongitudinal or in-line structure shownin Fig. 1 avoids
this drawback by having its input and output ports located
in physically remote resonators. However, this topology is
sub-optimum, having lessthan N — 2 finite transmission zeros
for degrees higher than four. The maximum number of finite
transmission zeros (n1) is given by [6]

N N
5 for ) even
= 9
" N 1 for Nodd ®
2 ’ 2 '

The synthesized S,; with finite transmission zeros less than
N —2resultsin no coupling between thefirst and | ast resonators,
making M.(1, 1) = 0.

a) Degrees 6 and 8: Fig. 1 depicts the signal flow dia-
grams [6] for sixth- and eighth-order longitudinal (in-line) re-
alizations with the corresponding even-mode coupling matrix.
Table | provides the maximum number of transmission zeros
possiblefor each degree and zero elementsin A4 for which the
constraint (7) needsto beimposed. From here onwards, the cou-
pling between nodes given in the signal flow graph are marked
in terms of the elements of M g.

The synthesis of a sixth-order pseudoelliptic filtering func-
tion So; with two finite transmission zeros resultsin the general
even-mode coupling matrix, from which the first row of 7. and
A, are available. The remaining two rows comprising six un-
knowns can be obtained numerically by the NR procedure ex-
plained. The required six constraints can be composed with five
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Fig. 1. Signal flow graph and the corresponding even-mode coupling matrix.
(a) Sixth order. (b) Eighth order. The solid lines show direct couplings, whereas
the dotted lines denote cross-couplings.

TABLE |
LONGITUDINAL TOPOLOGY: FILTER ORDERS 6 AND 8

max. no. of finite Zero elements in upper

Order transmission zeros (#;) triangle of Mg for (7)
6 2 Moy
8 4 M3, M2, M24

congtraints for orthonormality of 7z using (5) and a zero ele-
ment M>2 = 0 using (7). A similar procedure can be followed
for the eighth-order .S5; with four finite transmission zeros. The
initial values for the variables were randomly chosen to lie be-
tween [0, 1].

b) Degrees 10 and 12: Fig. 2 illustrates the signal flow
diagrams for tenth- and 12th-order longitudinal (in-line) real-
izations, with the corresponding even-mode coupling matrix.
Table Il provides the maximum number of transmission zeros
possiblefor each degree, and the zero elementsin Mg for which
the constraint (7) needs to be imposed.

Thefilter orders 10 and 12 have one more constraint than de-
grees of freedom, making the system of equations unsolvable
unless one redundancy is found. This leads to an argument that
itispossibleto find an orthonormal matrix 7'’z relaxing one con-
straint. Obviously the constraint to be dropped should be onefor
azero element in Mg. The resultant matrix is then expected to
contain only one unwanted coupling, still producing the same
synthesized S»;. We investigated the numerator of S»; by di-
rect analysis in terms of nonzero coupling coefficients of the
resulting coupling matrix when only one of the constraints for
zero elementsin Mg is relaxed.
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Fig. 2. Signal flow graph and the corresponding even-mode coupling matrix.
(a) Tenth order. (b) 12th order.

TABLE I
LONGITUDINAL TOPOLOGY: FILTER ORDERS 10 AND 12

Order n;  Zero elements in upper triangle of M for (7)
10 4 M3.M15. M, M24,Mys, M33.(M44)
12 6  M13.M15.M16, M2, M24.M25.M26.

M33,M35,M46,(M4g)

The numerator p(s) for a tenth-order S»;, reproduced from
Mg when the M, = 0 constraint isrelaxed, can be written as

p(s) :M124MZ436
— M2 MZ Mss — 2MosMyoMas Myz My
+2M3 Mya M3y — 2Mos Mo Maa Mas M4

+ 2 2 2 s*
F2Mi Moy Mso — 2M7 Mys Mas May

+M7 My My

+ ()87 ()80 (20)

Since the synthesized S»; has a fourth-order numerator, ei-
ther M4 or/fand My, should be zero. However, it can be seen
from (10) that if A4 is zero, the order of the numerator drops
to two, which cannot happen since the similarity transformation
under three conditions stated does not change S»;. Therefore,
the system of equations should convergeto aresult, making A4y,
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equal to zero when asolution exists. Thus, it is possible to solve
the nonlinear system without a constraint for A4y, = 0, lill re-
sulting in the required reduced matrix with A4,4 = 0. However,
thisis not valid for other constraints.

Similarly, for the 12th order, it can be shown that the M4y = 0
constraint becomes a redundancy when there exists a solution
Mp.

2) CQRealization: TheCQ topology isanother widely used
structure. This consists of cascaded sections of four resonators
or nodes, each with one cross-coupling. The filters with this
structure are simple to tune since each CQ section is entirely
responsible for producing one pair of transmission zeros [8].
The maximum number of finite transmission zeros for the CQ
topology isthe same asfor the longitudinal topology for agiven
order. This can be verified using the method proposed by Amari
[9] to find the maximum number of finite transmission zerosfor
a given topology matrix.

Symmetric CQ structures for eighth, tenth, and 12th orders
are discussed in this section. Fig. 3 showsthe signal flow graph
and the corresponding even-mode coupling matrix for those or-
ders. Table Il provides the maximum permissible finite trans-
mission zeros, and lists the zero elements in the upper triangle
of Mg that need to be annihilated.

The CQ topology is similar to the longitudinal topology for
the orders considered without having some of the couplings.
Thisisreflected by oneadditional zero element initseven-mode
coupling matrix, leading to an additional constraint without in-
creasing the degrees of freedom.

A solution to this problem may be found by exploiting the
characteristics of CQ topology and the symmetric nature of the
structure. As stated before, each CQ section is entirely respon-
sible for producing one pair of transmission zeros. Further, itis
not possibleto realize transmission coefficients contai ning com-
plex transmission zeros in CQ form [10]. Thus, it can be con-
cluded that a symmetric CQ structure should possess at least
a pair of second-order transmission zeros for the filter orders
considered. This determines the nature of the transmission co-
efficient that can berealized in asymmetric CQ structurefor the
above orders.

Now the synthesis can be done for S5; with a second-order
transmission-zero pair. The resultant general even-mode cou-
pling matrix can be converted to the desired form following
the same procedure as for the same order longitudinal topology,
dropping the constraints for the elements given in brackets for
each order in Table I11.

However, itisalso possibleto realize S»; with asecond-order
transmission-zero pair in a longitudina topology. Thus, the
system of equations can converge to two different solutions.
One leads to the CQ redlization. The longitudina case has
Ms3 # 0 for the eighth order, M35 # 0 for the tenth order,
and M3 # 0 for the 12th order. This can be distinguished very
easily and can start the iteration procedure with fresh initial
values until it converges to the correct topology.

Ill. RESULTS

Computer programs have been devel oped to implement syn-
thesis and matrix reduction procedures. This section demon-
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Fig. 3. Signa flow graph and the corresponding even-mode coupling matrix
for CQ topology. (8). Eighth order. (b) Tenth order. (c) 12th order.

TABLE Il
CQ TorPOLOGY: FILTER ORDERS 8, 10, AND 12

Order n;  Zero elements in upper triangle of M;, for (7)

8 4 My3,Mp,M24,(M33)

10 4 My3,M15. M), Mp4,M25,M33,
(M36,M44)

12 6 M3, M5, M6, M2, M4, M25, M2,

M33, M35, M46,(M36, M44)

strates the results by considering a tenth-order pseudoelliptic
function filter with the following specifications: maximum loss
in the passband = 0.05 dB, and minimum attenuation in the
stopband = 80 dB. Using the above specifications, finite trans-
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mission zeros ( ;) and reflection zeros (r;) can be computed for
the longitudinal redlization as »z; = 71.6244, 2, = ;1.9841,
r1 = 0,79 = 70.4285, r3 = 70.6985, 4, = j0.8900, r5 =
70.9878, and their complex conjugates. For this case, normal-
ized terminal resistancesare Ry = Ry = 1.1632 and the gen-
eral even-mode coupling matrix M. is given by

o 0.0000 —0.5604 0.1664 —0.2268 0.6037
—0.5604 —-0.8731 —0.0813 0.1108 —0.2950

= 0.1664 —0.0813 0.4955 0.1431 —0.3809
—0.2268 0.1108 0.1431 0.0129 —-0.5921
0.6037 —0.2950 —0.3809 —-0.5921 —0.1588

Following the reduction scheme of Section I, roughly 25 it-
erations were needed to get to the rapid convergence region.
Then the NR quadratic error properties was observed, resulting
in only four more iterations for convergence. Convergence was
defined as occurring when the maximum changein the T-matrix
elements was less than 0.000001. This process gives

Mg
0.0000 0.8588 0.0000 —-0.1416 0.0000
0.8588 0.0000 0.6851 0.0000 0.0000
= 0.0000 0.6851 0.0000 0.5150 —0.0139
—0.1416  0.0000 0.5150 0.0000 0.5165
0.0000 0.0000 —-0.0139 0.5165 —0.5236
(11)

For the CQ realization, thelocation of the second-order trans-
mission zero is found by averaging the first two transmission
zeros of the longitudinal realization in the previous example.
Thenew z;’sand r»;’sare z; = 71.80425, 25 = j1.80425, r1 =
0, 7o = 50.4285, 73 = j0.6985, r4 = j0.8900, r5 = j0.9878,
and their complex conjugates. For thiscase, normalized terminal
resistances are 1 = Ry = 1.1549.

M.
0.0000 —0.5555 0.1674 —0.2231 0.6045
—0.5555 —0.8757 —0.0812 0.1082 —0.2932
= 0.1674 —0.0812 0.4921 0.1406 —0.3810
—0.2231 0.1082 0.1406 0.0099 —-0.5914
0.6045 —-0.2932 -0.3810 -0.5914 —0.1501

After following thereduction scheme of Section |1, with approx-
imately 30 iterations

Mg
0.0000 0.8605 0.0000 0.1065 0.0000
0.8605 0.0000 —0.6635 0.0000 0.0000
= 10.0000 —-0.6635 0.0000 0.5253 0.0000
0.1065 0.0000 0.5253 0.0000 0.5305
0.0000 0.0000 0.0000 0.5305 —0.5237

(12)
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Fig. 4. Transmission coefficients reproduced from the reduced coupling
matrices for each case.

A simple scaling procedure described in [6] could be used to
make the direct couplings of the same sign and cross-couplings
to take arbitrary sign for easy realization.

Fig. 4 depicts the transmission coefficient S3; magnitudes,
produced by the reduced coupling matrices (11) and (12). Each
of them coincides with the synthesized S»; . This shows the ac-
curacy of the presented matrix reduction procedure.

IV. CONCLUSION

Three properties that a reduced even-maode coupling matrix
should retain from itsinitial matrix have been identified. Based
on that, a numerical coupling matrix reduction technique has
been developed satisfying all three conditions. This scheme nu-
merically finds a reduced coupling matrix suitable for longi-
tudinal and CQ topologies. Adding some intelligence to the
iteration procedure ensures rapid convergence of the numer-
ical method. This scheme has been evaluated by synthesizing
even-order pseudoelliptic transmission coefficients Sy, for dif-
ferent filter characteristics. The reproduced S; from the re-
duced matrix agrees well with the one originally synthesized.
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