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Rapid Coupling Matrix Reduction for Longitudinal
and Cascaded-Quadruplet Microwave Filters
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Abstract—To realize standard microwave filter structures, it is
necessary to zero some of the elements in a general even-mode cou-
pling matrix. The zeroing process involves solving a nonlinear set of
equations, performed here by using the Newton–Raphson method.
Thus, intelligence is added to the numerical iteration procedure, to
ensure rapid convergence. The reproduced transmission coefficient
21 from the reduced matrix agrees well with the one synthesized.

Index Terms—Cascaded-quadruplet (CQ) topology, coupling
matrix, filter synthesis, longitudinal topology.

I. INTRODUCTION

M ICROWAVE filters composed of coupled resonators can
generate transmission zeros only by having cross-cou-

plings among nonadjacent resonators. Atia and Williams set out
a general theory for cross-coupled resonator bandpass filters in
their series of publications [1]–[4], which is still widely used
in the synthesis of these types of filters. Once the low-pass
transmission coefficient has been approximated, their
synthesis procedure directly extracts the elements of a full
or an even-mode coupling matrix and the external coupling
values. However, the resultant coupling matrix generally
contains all possible couplings, which makes it unrealizable
[4]. Therefore, it is usual to annihilate the unwanted couplings
without changing the lossless network characterized by the
coupling matrix.

Among the various methods, repeated similarity transforma-
tions are applied to minimize the unwanted couplings [1]. How-
ever, this method does not always converge for longitudinal
(in-line) and cascade quadruplet topologies or can take a very
large number of iterations (say, 10 ) to obtain a result. Further,
it is often not possible to find a sequence of similarity transfor-
mations as presented in [5] or [6] to realize the two topologies
commencing from this general full or even-mode coupling ma-
trix.

This paper presents a coupling matrix reduction method
commencing from a general even-mode coupling matrix ,
extracted from the synthesis procedure outlined in [1]–[4].
Physically symmetrical structures are considered for even-order
filter realization for longitudinal and cascaded-quadruplet (CQ)
topologies. There are three necessary conditions (see Sec-
tion II) that need to be satisfied by the reduced matrix to
preserve the synthesized transmission coefficient of the lossless
network. Instead of applying repeated similarity transforma-
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tions, a system of nonlinear equations is formed for a single
orthonormal transformation to find a reduced matrix similar to

, with the required topology satisfying the three conditions.
The Newton–Raphson (NR) method is used to solve the set
of nonlinear equations numerically. Thus, some intelligence is
added to the iteration procedure to ensure convergence. The
analytical expressions are provided to form the constraints
and the Jacobian matrix for the NR procedure. It is shown
that this method can be applied for even filter orders 6–12
for longitudinal realization and 8–12 for CQ realization. The
validity of the scheme has been verified by synthesizing
even-order pseudoelliptic filtering functions. The iteration
procedure converges within 40 iterations for all the filter orders
considered. The transmission coefficient calculated from the
reduced coupling matrix agrees with the synthesized .

This paper is organized as follows. Section II briefly describes
the synthesis procedure to extract and the proposed coupling
matrix reduction scheme. The results are discussed in Section III
and Section IV presents conclusions.

II. SYNTHESIS OF THE TRANSFER FUNCTION AND

COUPLING MATRIX REDUCTION

A. Synthesis of the Transfer Function

The synthesis procedure, which extracts a general even-mode
coupling matrix for a given even-order , is discussed
in [1]–[4]. The synthesis is based on assuming a symmetrical
doubly and equally terminated network. The coupling matrix
reduction method discussed in this paper commences from the

computed from this synthesis procedure.
The even-mode coupling matrix is defined as [2]

(1)

where is an orthonormal matrix and is a diagonal matrix.
The resultant is an order symmetric real matrix, where

is the filter order.
For a given low-pass , the synthesis procedure extracts

the first row of , the diagonal matrix , and the terminal
resistance values and . The complete may be formed
by using the Gram–Schmidt procedure [1].

Matrix , obtained by the synthesis procedure described
above, contains all possible couplings. Therefore, it is usual
to annihilate the unwanted couplings to result in a more com-
pact structure. The reduced coupling matrix can be expressed
as , where is an orthonormal matrix. After
annihilation, should satisfy the following three conditions.

1) is real and symmetric.
2) Eigenvalues of should be the same as . i.e.,

is similar to .
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3) The first row of is identical in magnitude to the first
row of .

The first condition retains the symmetric network assumed.
The last two conditions preserve the synthesized lossless net-
work. Thus, the reduced matrix can reproduce the same power
transmission coefficient as synthesized. Even though the
similarity transformations satisfy the first two conditions, pre-
vious work overlooked the third condition, which also needs to
be satisfied.

Section II-B discusses the matrix reduction process, which
reduces a general even-mode coupling matrix for longitudinal
CQ realizations. This process satisfies the three conditions out-
lined above.

B. Matrix Annihilation Using the NR Method

The general method is to find an orthonormal matrix such
that

(2)

where gives the required topology and satisfies the three
conditions stated above. It is possible to write a system of gen-
eralized quadratic equations to hold orthonormality of and
zero elements in in terms of unknown elements in . The
resultant quadratic equations can be solved numerically using
the NR method, which converges quadratically near a possible
solution.

The expression for the quadratic equations and the linear
Jacobian matrix can be derived as follows.

For an even-mode coupling matrix, let

(3)

and

(4)

Since the first row of is known, the number of unknowns
. The number of constraints to satisfy orthonor-

mality of are and are given by

for (5)

The first derivative of (5) with respect to unknowns
and is given by

for and

(6a)

for and

else
(6b)

for and

(6c)

Constraints for the zero elements in the upper triangle of
can be given as

for and (7)

Since the first row of and are fixed, the element
is a constant. The first derivative of (7) with respect

to unknowns and
is given by

for and

(8a)

for and

else
(8b)

for and

(8c)

The , vector is formed by (5) and (7). Equations (6)
and (8) form the Jacobian matrix of order . The following sec-
tions show how the above method can be applied to reduce
suitable for longitudinal and CQ topologies.

1) Longitudinal Realization: The main disadvantage of a
canonical structure is the incidental coupling between the input
and output ports [7] since they are adjacent resonators of a
single-mode resonator filter or the same cavity of a dual-mode
filter. This limits the maximum achievable out-of-band isola-
tion. The longitudinal or in-line structure shown in Fig. 1 avoids
this drawback by having its input and output ports located
in physically remote resonators. However, this topology is
sub-optimum, having less than finite transmission zeros
for degrees higher than four. The maximum number of finite
transmission zeros is given by [6]

for even

for odd.
(9)

The synthesized with finite transmission zeros less than
results in no coupling between the first and last resonators,

making .
a) Degrees 6 and 8: Fig. 1 depicts the signal flow dia-

grams [6] for sixth- and eighth-order longitudinal (in-line) re-
alizations with the corresponding even-mode coupling matrix.
Table I provides the maximum number of transmission zeros
possible for each degree and zero elements in for which the
constraint (7) needs to be imposed. From here onwards, the cou-
pling between nodes given in the signal flow graph are marked
in terms of the elements of .

The synthesis of a sixth-order pseudoelliptic filtering func-
tion with two finite transmission zeros results in the general
even-mode coupling matrix, from which the first row of and

are available. The remaining two rows comprising six un-
knowns can be obtained numerically by the NR procedure ex-
plained. The required six constraints can be composed with five
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(a)

(b)

Fig. 1. Signal flow graph and the corresponding even-mode coupling matrix.
(a) Sixth order. (b) Eighth order. The solid lines show direct couplings, whereas
the dotted lines denote cross-couplings.

TABLE I
LONGITUDINAL TOPOLOGY: FILTER ORDERS 6 AND 8

constraints for orthonormality of using (5) and a zero ele-
ment using (7). A similar procedure can be followed
for the eighth-order with four finite transmission zeros. The
initial values for the variables were randomly chosen to lie be-
tween .

b) Degrees 10 and 12: Fig. 2 illustrates the signal flow
diagrams for tenth- and 12th-order longitudinal (in-line) real-
izations, with the corresponding even-mode coupling matrix.
Table II provides the maximum number of transmission zeros
possible for each degree, and the zero elements in for which
the constraint (7) needs to be imposed.

The filter orders 10 and 12 have one more constraint than de-
grees of freedom, making the system of equations unsolvable
unless one redundancy is found. This leads to an argument that
it is possible to find an orthonormal matrix relaxing one con-
straint. Obviously the constraint to be dropped should be one for
a zero element in . The resultant matrix is then expected to
contain only one unwanted coupling, still producing the same
synthesized . We investigated the numerator of by di-
rect analysis in terms of nonzero coupling coefficients of the
resulting coupling matrix when only one of the constraints for
zero elements in is relaxed.

(a)

(b)

Fig. 2. Signal flow graph and the corresponding even-mode coupling matrix.
(a) Tenth order. (b) 12th order.

TABLE II
LONGITUDINAL TOPOLOGY: FILTER ORDERS 10 AND 12

The numerator for a tenth-order , reproduced from
when the constraint is relaxed, can be written as

(10)

Since the synthesized has a fourth-order numerator, ei-
ther or/and should be zero. However, it can be seen
from (10) that if is zero, the order of the numerator drops
to two, which cannot happen since the similarity transformation
under three conditions stated does not change . Therefore,
the system of equations should converge to a result, making
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equal to zero when a solution exists. Thus, it is possible to solve
the nonlinear system without a constraint for , still re-
sulting in the required reduced matrix with . However,
this is not valid for other constraints.

Similarly, for the 12th order, it can be shown that the
constraint becomes a redundancy when there exists a solution

.
2) CQ Realization: The CQ topology is another widely used

structure. This consists of cascaded sections of four resonators
or nodes, each with one cross-coupling. The filters with this
structure are simple to tune since each CQ section is entirely
responsible for producing one pair of transmission zeros [8].
The maximum number of finite transmission zeros for the CQ
topology is the same as for the longitudinal topology for a given
order. This can be verified using the method proposed by Amari
[9] to find the maximum number of finite transmission zeros for
a given topology matrix.

Symmetric CQ structures for eighth, tenth, and 12th orders
are discussed in this section. Fig. 3 shows the signal flow graph
and the corresponding even-mode coupling matrix for those or-
ders. Table III provides the maximum permissible finite trans-
mission zeros, and lists the zero elements in the upper triangle
of that need to be annihilated.

The CQ topology is similar to the longitudinal topology for
the orders considered without having some of the couplings.
This is reflected by one additional zero element in its even-mode
coupling matrix, leading to an additional constraint without in-
creasing the degrees of freedom.

A solution to this problem may be found by exploiting the
characteristics of CQ topology and the symmetric nature of the
structure. As stated before, each CQ section is entirely respon-
sible for producing one pair of transmission zeros. Further, it is
not possible to realize transmission coefficients containing com-
plex transmission zeros in CQ form [10]. Thus, it can be con-
cluded that a symmetric CQ structure should possess at least
a pair of second-order transmission zeros for the filter orders
considered. This determines the nature of the transmission co-
efficient that can be realized in a symmetric CQ structure for the
above orders.

Now the synthesis can be done for with a second-order
transmission-zero pair. The resultant general even-mode cou-
pling matrix can be converted to the desired form following
the same procedure as for the same order longitudinal topology,
dropping the constraints for the elements given in brackets for
each order in Table III.

However, it is also possible to realize with a second-order
transmission-zero pair in a longitudinal topology. Thus, the
system of equations can converge to two different solutions.
One leads to the CQ realization. The longitudinal case has

for the eighth order, for the tenth order,
and for the 12th order. This can be distinguished very
easily and can start the iteration procedure with fresh initial
values until it converges to the correct topology.

III. RESULTS

Computer programs have been developed to implement syn-
thesis and matrix reduction procedures. This section demon-

(a)

(b)

(c)

Fig. 3. Signal flow graph and the corresponding even-mode coupling matrix
for CQ topology. (a). Eighth order. (b) Tenth order. (c) 12th order.

TABLE III
CQ TOPOLOGY: FILTER ORDERS 8, 10, AND 12

strates the results by considering a tenth-order pseudoelliptic
function filter with the following specifications: maximum loss
in the passband dB, and minimum attenuation in the
stopband dB. Using the above specifications, finite trans-
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mission zeros ( ) and reflection zeros ( ) can be computed for
the longitudinal realization as , ,

, , , ,
, and their complex conjugates. For this case, normal-

ized terminal resistances are and the gen-
eral even-mode coupling matrix is given by

Following the reduction scheme of Section II, roughly 25 it-
erations were needed to get to the rapid convergence region.
Then the NR quadratic error properties was observed, resulting
in only four more iterations for convergence. Convergence was
defined as occurring when the maximum change in the T-matrix
elements was less than 0.000001. This process gives

(11)

For the CQ realization, the location of the second-order trans-
mission zero is found by averaging the first two transmission
zeros of the longitudinal realization in the previous example.
The new ’s and ’s are , ,

, , , , ,
and their complex conjugates. For this case, normalized terminal
resistances are .

After following the reduction scheme of Section II, with approx-
imately 30 iterations

(12)

Fig. 4. Transmission coefficients reproduced from the reduced coupling
matrices for each case.

A simple scaling procedure described in [6] could be used to
make the direct couplings of the same sign and cross-couplings
to take arbitrary sign for easy realization.

Fig. 4 depicts the transmission coefficient magnitudes,
produced by the reduced coupling matrices (11) and (12). Each
of them coincides with the synthesized . This shows the ac-
curacy of the presented matrix reduction procedure.

IV. CONCLUSION

Three properties that a reduced even-mode coupling matrix
should retain from its initial matrix have been identified. Based
on that, a numerical coupling matrix reduction technique has
been developed satisfying all three conditions. This scheme nu-
merically finds a reduced coupling matrix suitable for longi-
tudinal and CQ topologies. Adding some intelligence to the
iteration procedure ensures rapid convergence of the numer-
ical method. This scheme has been evaluated by synthesizing
even-order pseudoelliptic transmission coefficients for dif-
ferent filter characteristics. The reproduced from the re-
duced matrix agrees well with the one originally synthesized.
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